

Valentin Doli

Funding MESR + ARED

2014 - 2017

UMR IGEPP

Institute for Genetics, Environment and Plant Protection

INRA - Agrocampus Ouest - Université de Rennes 1

Team

Resistance and adaptation

Direction

François Castella Frédéric Hamelin

Partners

University of Alberta

Keywords

Allee effect Results Mate limitation Critical patch size Reaction-diffusion Sexual reproduction Travelling waves

Propagation phenomena of plant parasitic fungi

Scientific context

Mark Lewis, Frederic Hamelin and co-authors have lately proposed simple propagation models of parasite fungi of plants, which are based on a coupling between pure diffusion and propagation by sexual way. Our model which has been studied here is the Black Sigatoka of banana stress, a fungal palnt parasite desease, which were observed in Costa Rica in 1977.

Objectives

The aim is to obtain realistic propagation models, and to explain the role of the coupling mentionned above in the involved phenomenons. In particular, they notice that a pure diffusion model, without taking into account the sexual aspect, clumsily overestimate the propagation speeds with respect to those real observed. Their analysis are based on a SI model type in one dimensional space, which leads to two coupled parabolic PDE. In this system, a formal asymptotic analysis is realized, which is based on a long time and small diffusion assumption, which leads to research traveling wave fronts in a one dimensional elliptical model.

The original model converges to the integrodifferential model, which gives a good approximation of the first one, This leads us to look for a travelling wave front type solution according to the good approximation of the simplest model.

Perspectives

- Exploring traveling wave solutions in the integrodifferential model with non-linear dispersal and comparing with the linear theory.
- Extending our study to a 2-dimensional spatial domain and exploring how the critical patch size depends on the ratio of sexual to asexual reproduction.
- Including stochastic mating in the model as it may have important consequences even under a balanced sex-ratio.

